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LETTER TO THE EDITOR 

For fluids adsorbed at walls the MWDA density functional 
theory is equivalent to an HNC approach 

J A Whitet and R Evans 
H H Wills Physics Laboratory, University of Bristol, Bristol BS8 ITL,  UK 

Received 13 October 1989, in final form 15 January 1990 

Abstract. The modified weighted density approximation (MWDA) introduced by Denton and 
Ashcroft in 1989 in a density functional theory of inhomogeneous fluids is applied to the case 
of fluid adsorption at planar walls. It is shown that the MWDA is completely equivalent to the 
hypernetted-chain closure of the wall-particle Ornstein-Zernike equation (HNCWP) for such 
problems. Because of the nature of the uniform fluid higher-order direct correlation functions 
within the MWDA, this theory of adsorption consititutes a truncation of the functional 
expansion of the free energy. The MWDA can also be used as the basis of a theory for the 
radial distribution function of a homogeneous fluid, where it is equivalent to the bulk HNC. 
For fluids confined in pores, however, the MWDA is not identical to the HNCWP. 

Density functional methods for determining the equilibrium structure and thermo- 
dynamic properties of highly inhomogeneous fluids have become increasingly popular 
during the last decade (see, e.g., Evans 1979,1989). The key idea behind such methods 
is the Hohenberg-Kohn-Mermin result that the intrinsic Helmholtz free energy B of a 
fluid is a unique functional of the average one-particle density p(r) .  3 [p ]  then acts as a 
generating functional for the hierarchy of direct correlation functions. Practical appli- 
cations to fluid interfaces (Evans 1989) or to the theory of freezing (Baus 1987 and 
references therein) require some explicit approximation for 3 [ p ]  and the implicit 
assumption that the variational principle applies to approximate, as well as exact, 
functionals. A plethora of approximations exist. Some, such as the SDA (smoothed 
density approximation) of Tarazona (1984,1985), have been implemented successfully 
for a wide variety of problems, while others have been applied to a specific type of 
inhomogeneity. Relationships between different approximations are, if they exist, often 
obscure. One of the more soundly based approaches is the WDA (weighted density 
approximation) of Curtin and Ashcroft (1985). As with Tarazona’s SDA, the WDA 
introduces a coarse-grained or weighted average, p ( r ) ,  of the local density p( r )  that is 
sufficiently smooth to be used in the local density approximation for the local excess 
(over ideal) free energy per particle. The determination of the weight function is 
computationally laborious in the WDA, however, and this feature has restricted its use. 
Very recently Denton and Ashcroft (1989) have introduced a modification (the MWDA) 
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which retains many of the good features of the original WDA but which requires con- 
siderably less computational effort. Denton and Ashcroft showed that, when applied to 
the freezing of the hard-sphere liquid, the MWDA was about as accurate as the WDA,  
which is known to yield results in good agreement with simulation. Since the MWDA 
involves only a position independent average density p ,  rather thanp(r), it is not obvious 
how such an approach can be applied to interfacial problems, where the inhomogeneity 
is generally of finite range (Denton and Ashcroft 1989). The present letter addresses 
this issue. More specifically we investigate the predictions of the MWDA for the density 
profile and free energy of an inhomogeneous fluid at a planar wall exerting an external 
potential V(r) = V(z) on particles in the fluid. We find, rather surprisingly, that for 
this type of interfacial problem the MWDA is completely equivalent to the well-known 
(HNCWP) hypernetted-chain closure of the wall-particle Ornstein-Zernike (oz) 
equation. It follows that the MWDA shares the strengths of the HNCWP, that is it will 
provide a reasonably accurate description of an oscillatory profile near the wall, as well 
as the weakness, which is that it fails to account for the exact contact condition, and this 
has repercussions for the description of phase transitions at interfaces. For some other 
types of adsorption problem, such as occur for fluids in pores, the MWDA will not be 
equivalent to the HNCWP. 

We recall that the basic assumption of the MWDA is that the excess free energy per 
particle F,,[p]/N, which is independent of position, can be expressed directly in terms 
of p :  

where N is the total number of particles andf, is the excess free energy per particle of a 
uniform fluid. 

%id[p] = b-’ 1 drp(r)( lnA3p(r)  - 1) 

is the free energy of the ideal gas; p-’ = k,Tand A is the thermal de Broglie wavelength. 
The weighted density is defined by 

1 r r  
1 p = J J d r  dr ’  p(r)p(r’)w(r - r’; p )  

where w(r;  p )  is the weight function. In the limit of auniform fluid, p(r) + Po, (1) implies 
that p must reduce to po and it follows that w must be normalised: 

d r ’  w(r - r ’ ;  0) = 1. (3) i 
w is specified uniquely by requiring that the defining relation (Evans 1979) for the two- 
particle direct correlation function be satisfied exactly in the uniform limit, i.e. 

where cb2) is the two-particle direct correlation function of the uniform fluid. Denton 
and Ashcroft (1989) show that 

w(r - r ’ ;  P o )  = -(1/2f;,(po))[B-’cb2)(r - r’; Po)  + (1/Vn)pof6(po)I ( 5 )  

where the prime denotes differentiation with respect to the density. Vo is the total 
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volume. Unlike the original WDA, where the weight function can only be obtained 
numerically by solving a differential equation, w is now given directly in terms of c&*), 
which is assumed to be known for a given fluid. Note that the compressibility sum rule 
is satisfied automatically (Denton and Ashcroft 1989). This result follows by integrating 
both sides of ( 5 )  and using (3). With this prescription for w, FEWDA [ p ]  is determined 
completely. In any application p must be calculated self-consistently by minimisation of 
the (approximate) grand potential functional 

Q ~ [ P I  = s i id[P~+ F,M,WD*[~I  + j d r p ( r ) ( v ( r )  (6) 

where p is the chemical potential. The equilibrium density p ( r )  satisfies 

6Wp1/6p(r) = 0 (7) 

and the minimum value of S2” is a ,  the grand potential of the inhomogeneous fluid. 
For adsorption at a wall it is convenient to re-express (7) as 

p(r> = Pb exp(-pv(r) + c(l)(r)  - chl)(ph)) (8) 

is the one-particle direct correlation function and c&l) is the corresponding quantity for 
the bulk fluid: 

ck)(ph) = In  A3pb - pp = -p(fO(ph) +fh(Ph)Pb). (10) 

The functional derivative in (9) is easily evaluated: 

1 N60/6p(r)  = (2 1 d r ’  p(r’)w(r  - r ’ ;  0 )  - 0 

1 - I  
x (1 - I d r d r ’  p(r)p(r ’ )w’(r  - r ’ ;  6) 

where we have used the fact that 

N = drp( r ) .  I 
Note that in the limit of a uniform bulk fluid, with V(r )  = 0, N60/6p(r)  = &. This result 
follows from (1 l), recognising that, by virtue of (3), 

c(’)(r)  in (9) then reduces to the standard bulk result (10) in this limit. 
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We now suppose that the planar wall is infinitely repulsive for z < 0 so that 
p ( r )  = p(z) = 0, z < 0. It is convenient to introduce the quantity A(z) = p(z) - pb. 
Then r, the surface excess number of particles per unit area, can be written as 

and the weighted density as 

with 

W ( ~ Z  - z ’ \ ; @ )  dR w ( [ R 2  + ( Z  - z ’ ) ~ ] ’ ’ ~ ;  0) i, 
the surface integral over the wall. 

In deriving (13) we have assumed 

lim loL d z  W(Iz - 2’1; p )  = 1 
L-+= 

i.e. the weight function is normalised over the semi-infinite half-space z > 0. In the 
thermodynamic limit ( L  + m) the second and third terms in (13) make vanishingly small 
contributions. The second is O(L-’) times P b  provided the adsorption r is finite. It is 
straightforward to show that the double integral in (13) is finite as L + so the third 
term is also O(L-’) times &. (The constant term in w (see ( 5 ) )  makes a contribution 

Thus, for fluids near walls we find p = pb, as we would expect intuitively for finite 
ranged inhomogeneity. The only contentious point in the argument is whether the 
assumption th?t the weight function can be normalised (for z > 0) is compatible with 
the requirement ( 5 ) .  That problems of this type can arise in applications of the MWDA 
has been pointed out by Lutsko and Baus (1990). Here we can avoid the problem by 
making the (reasonable) assertion that the MWDA for adsorption corresponds to setting 
p = p b  in the equation for c( l ) (r) ,  i.e. 

O( L - 2 ) ) .  

since the double integral in the denominator of (11) is O(L-’). Substituting (14) into (8) 
and making use of ( 5 ) ,  (10) and the compressibility sum rule we obtain 

which is identical to the integral equation for p(z) that is obtained from the HNCWP 
(Perram and White 1975, Henderson et a1 1976). We should recall that the formally exact 
wall-particle oz equation is derived by treating the fluid as a homogeneous binary 
mixture of particles (the atoms) and large spheres and taking the limit in which only one 
sphere, with infinite radius, remains. The HNC is one of a variety of closure approxi- 
mations that have been applied to this equation. That the MWDA should be equivalent 
to this procedure is quite remarkable. 
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In order to understand better the equivalence it is instructive to consider (6), the 
MWDA for the grand potential functional, which can be re-expressed as 

Qv[P] = n[Pb] + 1 drp(z)V(z) + N(”(p-’ In A3Pb - p- ’  - /L) 

+ p-’ 1 drp(z )  In(%) + FzWDA[P] - N’f”(pb) (16) 

where N ’  = pbvo, i.e. Ids) = N - N ’ ,  and Q[Pb] is the grand potential of the bulk fluid. 
We now make a functional Taylor expansion, in powers of A(z),  about 
FgWDA[Pb] = N’f()(pb), and find 

XA(zl).  . . A(zn) - . . . . (17) 
where ck) is the n-particle direct correlation function of the bulk fluid to be evaluated 
within the MWDA. While the first three terms in the expansion (17) are identical to those 
that would arise in the corresponding expansion of the exact functional (recall that f o  
and cb2) are assumed known), the higher-order terms are, of course, different. The n- 
particle direct correlation function can be obtained by successive functional dif- 
ferentiation of FEWDA. After tedious algebra we find for the three-particle function 

-p-1c63)(r13r2, r3;Pb) = (2/VO)f!(Pb)(W(r1 - r 2 ; P b )  

+ w(rl - r3; Pb) + w ( r 2  - r3; Pb)) + (2/VO)fb(Pb) 

( W ’ ( r 1  - r2; Pb) + w’(r1 - r3; Pb) + w ’ ( r 2  - r3; Pb)) 

+ Pbfi(Pb)/Vi - 3f1(Pb)/v2,. (18) 
When this result is inserted into the fourth term in (17) it is easy to show that the largest 
contribution is O(L-’) times the contributions from the second and third terms which 
are both proportional to the wall area A .  Thus, in the thermodynamic limit L + CO, the 
term involving ch3) makes a vanishing contribution to the interfacial tension. It is straight- 
forward to show that the remaining higher-order terms (n > 3) in (17) also make no 
contribution, and hence that the MWDA grand potential functional (16) reduces to 

QVIPl = QIPbl + 1 drP(z)V(Z) + p-’ dr[P(z) In(%) - P ( z )  + Pb] 

- p-’ I 1 d r ,  d r 2  ck2)(r1 - r , ;  pb)A(zl) A(2,) 
2 
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where we have used (10). But (19) is precisely the functional that generates the HNCWP 
(Grimson and Rickayzen 1981), i.e. minimisation of (19) yields the integral equation 
(15). This exercise demonstrates that the MWDA is completely equivalent to the HNCWP 
for adsorption at walls. 

Note that while the HNCWP simply truncates the expansion of the exact functional 
F,,[p] after the term quadratic in A ,  the MWDA does include (approximations to) all 
higher-order terms. However, the MWDA for cL3), cL4) etc is such that for the adsorption 
problem the higher-order terms make no contribution to the surface tension and have 
no effect on the density profile. Presumably, for freezing, where the inhomogeneity 
extends throughout the system, the higher-order terms are non-vanishing and constitute 
important corrections to the quadratic approximation (Denton and Ashcroft 1989). In 
this context we should remark that although (18) would appear to be an unrealistic 
approximation (note the factors of V i ' )  for cL3)(rl - r,, r2 - r,; p o )  it is easy to check 
that the Fourier transform cL3)(k, k ' ;  p o )  does have the merit of satisfying the exact sum 
rule 

cL3)(k 0;  P o )  = ( ~ / d P o ) c L 2 ' ( k  Po) .  (20) 
The MWDA should also satisfy the higher-order (cp))  generalisations of (20) (Denton 
and Ashcroft 1989). 

Having shown the equivalence of the MWDA and the HNCWP for adsorption at a planar 
wall we should enquire how good a theory is the latter. Although there are few numerical 
results available (Grimson and Rickayzen 1981, Rickayzen and Augousti 1984, Zhou 
and Stell 1989a, b) it is known that for a hard-sphere fluid near a hard wall the HNCWP 
yields density profiles fairly close to those from the well-studied Percus-Yevick closure 
and, hence, to simulation, provided the reduced bulk density pbd3 S 0.4; d is the hard- 
sphere diameter. For higher bulk densities the HNCWP over-estimates the amplitude of 
the first few oscillations in p(z). In particular it is known that the HNCWP overestimates 
p(O+) the density of the fluid at contact with a hard wall. The exact sum rule is ~ ( 0 ' )  = 
p p  where p is the pressure of the bulk fluid while the HNCWP result is 

The failure of the HNCWP to account properly for the contact condition can be traced to 
the truncation of the functional expansion at quadratic order (Evans et a1 1983). The 
same truncation is responsible for the failure of the HNCWP (and the Percus-Yevick 
closure) to describe two-phase (liquid-gas) coexistence and, therefore, macroscopic 
wetting films, at an interface (Evans et a1 1983). As presented here, the MWDA will 
necessarily exhibit the same shortcomings. Notice that in deriving the result 1imL-% 0 = 
Pb we restricted the adsorption r to being finite. This automatically precludes any 
complete wetting of the wall-fluid interface. A satisfactory theory of interfacial phase 
transitions obviously requires a different approach. The more sophisticated density 
functional approximations, such as the SDA or the WDA, which are based on a spatially 
varying p(r) ,  do satisfy the contact condition and do account for complete wetting 
(Tarazona and Evans 1984, van Swol and Henderson 1989)-see also the approaches of 
Rickayzen and Augousti (1984) and Zhou and Stell (1989). These approximations give 
rise to ch3) etc which are much more realistic than the MWDA result (18), so the higher- 
order terms in the expansion of F,,[p] are non-vanishing in the appropriate limit. 

We conclude by commenting on the nature of the MWDA for other types of inhomo- 
geneity. If the fluid is confined in a pore with finite wall separation (slits) or radius 
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(cylinders and spheres) p will differ, in general, from pb(p), the density of the bulk fluid 
with the chemical potential of the adjoining reservoir. This will be the case even for 
infinitely long pores where the enclosed volume is infinite. Indeed the MWDA may be 
better suited to the calculation of fluid structure in pores than the HNCWP. The latter 
requires as input ch2) at the pre-assigned (bulk) density whereas the MWDA will determine 

self-consistently, albeit at the expense of more computational effort. Suppose, finally, 
that the inhomogeneity of the fluid density is caused by fixing one of the particles at the 
origin. This particle then exerts an external potential V(r)  = q(r)  on the others; q ( r )  is 
the usual pairwise interparticle potential. The average density ‘profile’ p( r )  (= p ( r ) )  
can now be identified with pgo(r ) ,  where go is the radial distribution function of the 
(homogeneous) fluid. In this case p = po( l  + O(N-’))  and we can repeat the steps 
leading to (15). The resulting integral equation for g,(r) is 

which is just the HNC closure for a homogeneous fluid (see, e.g., Percus 1964). ch2) is, as 
yet, unspecified. If (21) is supplemented by the exact oz equation we recover the usual 
HNC integral equation for go. Thus, the MWDA applied to the calculation of the radial 
distribution function is identical to the HNC approximation?. The grand potential func- 
tional which, upon minimisation, generates (21) is simply (19) with p(z) replaced by 
pgo(r )  and V ( z )  by q ( ~ ) .  Once again, terms of higher order do not affect the equation 
for the density profile, or go(r)  in the present case. 
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hospitality during his visit. 

References 

Baus M 1987 J .  Stat. Phys. 48 1129 
Curtin W A and Ashcroft N W 1985 Phys. Rev. A 32 2909 
Denton A R and Ashcroft N W 1989 Phys. Rev. A 39 4701 
Evans R 1979 Ado. Phys. 28 143 
- 

Evans R,  Tarazona P and Marini Bettolo Marconi U 1983 Mol. Phys. 50 993 
Grimson M J and Rickayzen G 1981 Mol. Phys. 42 767 
Henderson D, Abraham F F and Barker J 1976 Mol. Phys. 31 1291 
Kim S-C and Jones G L 1990 Phys. Rev. A at press 
Lutsko J F and Baus M 1990 Preprint 
Percus J K 1964 The Equilibrium Theory of Classical Fluids ed H L Frisch and J L Lebowitz (New York: 

Perram J W and White L R 1975 Discuss. Faraday Soc. 59 29 
Rickayzen G and Augousti A 1984 Mol. Phys. 52 1355 
Tarazona P 1984 Mol. Phys. 52 81 
- 1985 Phys. Rev. A 31 2672 
Tarazona P and Evans R 1984 Mol. Phys. 52 847 

1989 Proc. 48th Les Houches Summer School on Liquids at Interfaces ed J Charvolin, J F Joanny and 
J Zinn-Justin (Amsterdam: Elsevier) 

Benjamin) p 33 

t After completing this work we received a preprint from Kim and Jones (1990) in which they reach the same 
conclusion. 



2442 Letter to the Editor 

van Swol F and Henderson J R 1989 Phys. Rev. A 40 2567 
Zhou Y and Stell G 1989a Mol. Phys. 66 767 
- 1989b Preprint 


